Loading...
 

Analysing algorithmic behaviour of optimisation heuristics

Webpage: https://aaboh.nl/

Description

Optimisation and Machine Learning tools are among the most used tools in the modern world with their omnipresent computing devices. Yet, while both these tools rely on search processes (search for a solution or a model able to produce solutions), their dynamics have not been fully understood. This scarcity of knowledge on the inner workings of heuristic methods is largely attributed to the complexity of the underlying processes, which cannot be subjected to a complete theoretical analysis. However, this is also partially due to a superficial experimental setup and, therefore, a superficial interpretation of numerical results. In fact, researchers and practitioners typically only look at the final result produced by these methods. Meanwhile, a great deal of information is wasted in the run. In light of such considerations, it is now becoming more evident that such information can be useful and that some design principles should be defined that allow for online or offline analysis of the processes taking place in the population and their dynamics. Hence, with this workshop, we call for both theoretical and empirical achievements identifying the desired features of optimisation and machine learning algorithms, quantifying the importance of such features, spotting the presence of intrinsic structural biases and other undesired algorithmic flaws, studying the transitions in algorithmic behaviour in terms of convergence, any-time behaviour, traditional and alternative performance measures, robustness, exploration vs exploitation balance, diversity, algorithmic complexity, etc., with the goal of gathering the most recent advances to fill the aforementioned knowledge gap and disseminate the current state-of-the-art within the research community. Thus, we encourage submissions exploiting carefully designed experiments or data-heavy approaches that can come to help in analysing primary algorithmic behaviours and modelling internal dynamics causing them.

Workshop format: invited talks, paper presentations, and a panel discussion.


Organizers

Anna V Kononova
Anna V. Kononovais an Assistant Professor at the Leiden Institute of Advanced ComputerScience. She received her MSc degree in Applied Mathematics from Yaroslavl State University (Russia) in 2004 and PhD degree in Computer Science from University of Leeds (UK) in 2010. After a total of 5 years of postdoctoral experiences at Technical University Eindhoven (The Netherlands) and Heriot-Watt University (Edinburgh, UK), Anna has spent a number of years working as a mathematician in industry. Her current research interests include analysis of optimisation algorithms and machine learning.


 
Niki van Stein

Niki van Stein received her PhD degree in Computer Science in 2018, from the Leiden Institute of Advanced Computer Science (LIACS), Leiden University, The Netherlands. From 2018 until 2021 she was a Postdoctoral Researcher at LIACS, Leiden University and she is currently an Assistant Professor at LIACS. Her research interests lie in explainable AI for EC and ML, surrogate-assisted optimisation and surrogate-assisted neural architecture search, usually applied to complex industrial applications.


Daniela Zaharie
Daniela Zaharie is a Professor at the Department of Computer Science from the West University of Timisoara (Romania) with a PhD degree on a topic related to stochastic modelling of neural networks and a Habilitation thesis on the analysis of the behaviour of differential evolution algorithms. Her current research interests include analysis and applications of metaheuristic algorithms, interpretable machine learning models and data mining.


Fabio Caraffini
Fabio Caraffini is an Associate Professor in Computer Science at De Montfort University (Leicester, UK). Fabio holds a PhD in Computer Science (De Montfort University, UK, 2014) and a PhD in Mathematical Information Technology (University of Jyväkylä, Finland, 2016) and was awarded a BSc in ``Electronics Engineering and an MSc in ``Telecommunications Engineering by the University of Perugia (Italy) in 2008 and 2011 respectively. His research interests include theoretical and applied computational intelligence with a strong emphasis on metaheuristics for optimisation.


Thomas Bäck
Thomas Bäck is Full Professor of Computer Science at the Leiden Institute of Advanced Computer Science (LIACS), Leiden University, The Netherlands, where he is head of the Natural Computing group since 2002. He received his PhD (adviser: Hans-Paul Schwefel) in computer science from Dortmund University, Germany, in 1994, and then worked for the Informatik Centrum Dortmund (ICD) as department leader of the Center for Applied Systems Analysis. From 2000 - 2009, Thomas was Managing Director of NuTech Solutions GmbH and CTO of NuTech Solutions, Inc. He gained ample experience in solving real-life problems in optimization and data mining through working with global enterprises such as BMW, Beiersdorf, Daimler, Ford, Honda, and many others. Thomas Bäck has more than 350 publications on natural computing, as well as two books on evolutionary algorithms: Evolutionary Algorithms in Theory and Practice (1996), Contemporary Evolution Strategies (2013). He is co-editor of the Handbook of Evolutionary Computation, and most recently, the Handbook of Natural Computing. He is also editorial board member and associate editor of a number of journals on evolutionary and natural computing. Thomas received the best dissertation award from the German Society of Computer Science (Gesellschaft für Informatik, GI) in 1995 and the IEEE Computational Intelligence Society Evolutionary Computation Pioneer Award in 2015.