Loading...
 

Workshop on Quantum Optimization

Webpage:

Description

Scope

Quantum computers are rapidly becoming more powerful and increasingly applicable to solve problems in the real world. They have the potential to solve extremely hard computational problems, which are currently intractable by conventional computers. Quantum optimization is an emerging field that focuses on using quantum computing technologies to solve hard optimization problems.

There are two main types of quantum computers, quantum annealers and quantum gate computers.

Quantum annealers are specially tailored to solve combinatorial optimization problems: they have a simpler architecture, and are more easily manufactured and are currently able to tackle larger problems as they have a larger number of qubits. These computers find (near) optimum solutions of a combinatorial optimization problem via quantum annealing, which is similar to traditional simulated annealing. Whereas simulated annealing uses ‘thermal’ fluctuations for convergence to the state of minimum energy (optimal solution), in quantum annealing the addition of quantum tunnelling provides a faster mechanism for moving between states and faster processing.

Quantum gate computers are general purpose quantum computers. These use quantum logic gates, a basic quantum circuit operating on a small number of qubits, for computation. Constructing an algorithm involves a fixed sequence of quantum logic gates. Some quantum algorithms, e.g., Grover's algorithm, have provable quantum speed-up. Among other things, these computers can be used to solve combinatorial optimization problems using the quantum approximate optimization algorithm.

Quantum computers have also given rise to quantum-inspired computers and quantum-inspired optimisation algorithms.

Quantum-inspired computers use dedicated conventional hardware technology to emulate/simulate quantum computers. These computers offer a similar programming interface of quantum computers and can currently solve much larger combinatorial optimization problems when compared to quantum computers and much faster than traditional computers.

Quantum-inspired optimisation algorithms use classical computers to simulate some physical phenomena such as superposition and entanglement to perform quantum computations, in an attempt to retain some of its benefit in conventional hardware when searching for solutions.

To solve optimization problems on a quantum annealer or on a quantum gate computer using the quantum approximate optimization algorithm, we need to reformulate them in a format suitable for the quantum hardware, in terms of qubits, biases and couplings between qubits. In mathematical terms, this requirement translates to reformulating the optimization problem as a Quadratic Unconstrained Binary Optimisation (QUBO) problem. This is closely related to the renowned Ising model. It constitutes a universal class, since in principle all combinatorial optimization problems can be formulated as QUBOs. In practice, some classes of optimization problems can be naturally mapped to a QUBO, whereas others are much more challenging to map. In quantum gates computers, Grover’s algorithm can be used to optimize a function by transforming the optimization problem into a series of decision problems. The most challenging part in this case is to select an appropriate representation of the problem to obtain the quadratic speedup of Grover’s algorithm compared to the classical computing algorithms for the same problem.

Content

A major application domain of quantum computers is solving hard combinatorial optimization problems. This is the emerging field of quantum optimization. The aim of the workshop is to provide a forum for both scientific presentations and discussion of issues related to quantum optimization.

As the algorithms quantum that computers use for optimization can be regarded as general types of heuristic optimization algorithms, there are potentially great benefits and synergy to bringing together the communities of quantum computing and heuristic optimization for mutual learning.

The workshop aims to be as inclusive as possible, and welcomes contributions from all areas broadly related to quantum optimization, and by researchers from both academia and industry.

Particular topics of interest include, but are not limited to:

Formulation of optimisation problems as QUBOs (including handling of non-binary representations and constraints)
Fitness landscape analysis of QUBOs
Novel search algorithms to solve QUBOs
Experimental comparisons on QUBO benchmarks
Theoretical analysis of search algorithms for QUBOs
Speed-up experiments on traditional hardware vs quantum(-inspired) hardware
Decomposition of optimisation problems for quantum hardware
Application of the quantum approximate optimization algorithm
Application of Grover's algorithm to solve optimisation problems
Novel quantum-inspired optimisation algorithms
Optimization/discovery of quantum circuits
Quantum optimisation for machine learning problems
Optical Annealing
Dealing with noise in quantum computing
Quantum Gates’ optimisation, Quantum Coherent Control


Organizers

Alberto Moraglio
Alberto Moraglio is a Senior Lecturer at the University of Exeter, UK. He holds a PhD in Computer Science from the University of Essex and Master and Bachelor degrees (Laurea) in Computer Engineering from the Polytechnic University of Turin, Italy. He is the founder of a Geometric Theory of Evolutionary Algorithms, which unifies Evolutionary Algorithms across representations and has been used for the principled design and rigorous theoretical analysis of new successful search algorithms. He gave several tutorials at GECCO, IEEE CEC and PPSN, and has an extensive publication record on this subject. He has served as co-chair for the GP track, the GA track and the Theory track at GECCO. He also co-chaired twice the European Conference on Genetic Programming, and is an associate editor of Genetic Programming and Evolvable Machines journal. He has applied his geometric theory to derive a new form of Genetic Programming based on semantics with appealing theoretical properties which is rapidly gaining popularity in the GP community. In the last three years, Alberto has been collaborating with Fujitsu Laboratories on Optimisation on Quantum Annealing machines. He has formulated dozens of Combinatorial Optimisation problems in a format suitable for the Quantum hardware. He is also the inventor of a software (a compiler) aimed at making these machines usable without specific expertise by automating the translation of high-level description of combinatorial optimisation problems to a low-level format suitable for the Quantum hardware (patented invention).


Mayowa Ayodele

Mayowa Ayodele holds a PhD in Evolutionary Computation from Robert Gordon University, Scotland. She works as a Senior Solutions Architect at D-wave Quantum Inc. In this role, she specialises in addressing customer challenges through the utilisation of D-wave's quantum, hybrid, and classical optimisation solvers. Previously, she held the position of Principal Researcher at Fujitsu Research of Europe, United Kingdom, dedicating three years to investigating quantum-inspired techniques for solving optimisation problems.

Over the past decade, a significant portion of her research has revolved around the application of diverse algorithm categories, including, evolutionary algorithms for tackling problems in logistics, including the scheduling of trucks, trailers, ships, and platform supply vessels. In recent years, her focus has shifted towards formulating single and multi-objective constrained optimisation problems as Quadratic Unconstrained Binary Optimization (QUBO) as well as application quantum optimisation techniques to practical problems.


Francisco Chicano
Francisco Chicano holds a PhD in Computer Science from the University of Málaga and a Degree in Physics from the National Distance Education University. Since 2008 he is with the Department of Languages and Computing Sciences of the University of Málaga. His research interests include quantum computing, the application of search techniques to Software Engineering problems and the use of theoretical results to efficiently solve combinatorial optimization problems. He is in the editorial board of Evolutionary Computation Journal, Engineering Applications of Artificial Intelligence, Journal of Systems and Software and ACM Transactions on Evolutionary Learning and Optimization. He has also been programme chair and Editor-in-Chief in international events.


Ofer Shir
Ofer Shir is an Associate Professor of Computer Science at Tel-Hai College and a Principal Investigator at Migal-Galilee Research Institute – both located in the Upper Galilee, Israel. Ofer Shir holds a BSc in Physics and Computer Science from the Hebrew University of Jerusalem, Israel (conferred 2003), and both MSc and PhD in Computer Science from Leiden University, The Netherlands (conferred 2004, 2008; PhD advisers: Thomas Bäck and Marc Vrakking). Upon his graduation, he completed a two-years term as a Postdoctoral Research Associate at Princeton University, USA (2008-2010), hosted by Prof. Herschel Rabitz in the Department of Chemistry – where he specialized in computational aspects of experimental quantum systems. He then joined IBM-Research as a Research Staff Member (2010-2013), which constituted his second postdoctoral term, and where he gained real-world experience in convex and combinatorial optimization as well as in decision analytics. His current topics of interest include Statistical Learning within Optimization and Deep Learning in Practice, Self-Supervised Learning, Algorithmically-Guided Experimentation, Combinatorial Optimization and Benchmarking (White/Gray/Black-Box), Quantum Optimization and Quantum Control.


Lee Spector
Dr. Lee Spector is a Professor of Computer Science at Amherst College, an Adjunct Professor and member of the graduate faculty in the College of Information and Computer Sciences at the University of Massachusetts, Amherst, and an affiliated faculty member at Hampshire College, where he taught for many years before moving to Amherst College. He received a B.A. in Philosophy from Oberlin College in 1984, and a Ph.D. from the Department of Computer Science at the University of Maryland in 1992. At Hampshire College he held the MacArthur Chair, served as the elected faculty member of the Board of Trustees, served as the Dean of the School of Cognitive Science, served as Co-Director of Hampshire’s Design, Art and Technology program, supervised the Hampshire College Cluster Computing Facility, and served as the Director of the Institute for Computational Intelligence. At Amherst College he teaches computer science and directs an initiative on Artificial Intelligence and the Liberal Arts. My research and teaching focus on artificial intelligence and intersections of computer science with cognitive science, philosophy, physics, evolutionary biology, and the arts. He is the Editor-in-Chief of the Springer journal Genetic Programming and Evolvable Machines and a member of the editorial boards of the MIT Press journal Evolutionary Computation and the ACM journal Transactions on Evolutionary Learning and Optimization. He is a member of the Executive Committee of the ACM Special Interest Group on Evolutionary Computation (SIGEVO) and he has produced over 100 scientific publications. He serves regularly as a reviewer and as an organizer of professional events, and his research has been supported by the U.S. National Science Foundation and DARPA among other funding sources. Among the honors that he has received is the highest honor bestowed by the U.S. National Science Foundation for excellence in both teaching and research, the NSF Director's Award for Distinguished Teaching Scholars.


 
Matthieu Parizy